跳到主要内容

一型线面积分

一型曲线积分

光滑曲线质量,弧微分ds=[x(t)]2+[y(t)]2+[z(t)]2dt\mathrm{ds}=\sqrt{[x'(t)]^2+[y'(t)]^2+[z'(t)]^2}\mathrm{dt}

性质公式
曲线弧长Γ1ds=lΓ\int_{\Gamma}1ds=l_{\Gamma}
可积有界Γf(x,y,z)ds=A    mf(x,y,z)M\int_{\Gamma}f\left(x,y,z\right)\mathrm{ds}=A\implies m\le f\left(x,y,z\right)\le M
保号性Γf(x,y,z)dsΓf(x,y,z)ds\left\|\int_{\Gamma}f\left(x,y,z\right)\mathrm{ds}\right\|\le\iint_{\Gamma_{}}\left\|f\left(x,y,z\right)\right\|\mathrm{ds}
估值定理mlΓΓf(x,y,z)dsMlΓml_\Gamma\le\int_{\Gamma}f\left(x,y,z\right)ds\le Ml_\Gamma
线性可拆Γ[k1f(x,y,z)+k2g(x,y,z)]ds=k1Γf(x,y,z)ds+k2Γg(x,y,z)ds\int_{\Gamma}\left\lbrack k_1f\left(x,y,z\right)+k_2g\left(x,y,z\right)]\mathrm{ds}\right.=k_1\int_{\Gamma}f\left(x,y,z\right)\mathrm{ds}+k_2\int_{\Gamma}g\left(x,y,z\right)\mathrm{ds}
区域可加Γf(x,y,z)ds=Γ1f(x,y,z)ds+Γ2f(x,y,z)ds\int_{\Gamma}f\left(x,y,z\right)\mathrm{ds}=\int_{\Gamma_1}f\left(x,y,z\right)\mathrm{ds}+\int_{\Gamma_2}f\left(x,y,z\right)\mathrm{ds}
中值定理Γf(x,y,z)ds=f(ξ,η,ζ)lΓ\int_{\Gamma}f\left(x,y,z\right)\mathrm{ds}=f\left(\xi,\eta,\zeta\right)l_{\Gamma}
普通对称Γf(x,y,z)ds={2Γ1f(x,y,z)dsf(x,y,z)=f(x,y,z)0,f(x,y,z)=f(x,y,z)\int_{\Gamma}f\left(x,y,z\right)\mathrm{ds}=\left\{\begin{array}{l}2\int_{\Gamma_1}f\left(x,y,z\right)\mathrm{ds}& f\left(-x,y,z\right)=f\left(x,y,z\right)\\ 0,& f(x,y,z)=-f(-x,y,z)\end{array}\right.
轮换对称Γf(x,y,z)ds=Γf(y,x,z)ds\int_{\Gamma}f\left(x,y,z\right)\mathrm{ds}= \int_{\Gamma}f\left(y,x,z\right)\mathrm{ds}

将边界方程带入被积函数可化简

一型曲面积分

光滑曲面薄片质量。dS=1+[zx]2+[zy]2dxdy\mathrm{dS}=\sqrt{1+[z'_x]^2+[z'_y]^2}\mathrm{dxdy},基本计算方法:

Σf(x,y,z)dS=f[x,y,z(x,y)]1+(zx)2+(zy)2dxdy\iint_{\Sigma}f\left(x,y,z\right)dS=\iint f\left\lbrack x,y,z\left(x,y\right)\right\rbrack\sqrt{1+\left(z_{x}^{\prime}\right)^2+\left(z_{y}^{\prime}\right)^2}\mathrm{dxdy}

性质公式
曲面面积Σ1dS=S\iint_{\Sigma}1dS=S
可积有界Σf(x,y,z)dS=A    mf(x,y,z)M\iint_{\Sigma}f\left(x,y,z\right)\mathrm{dS}=A\implies m\le f\left(x,y,z\right)\le M
保号性Σf(x,y,z)dSΣf(x,y,z)dS\left\|\iint_{\Sigma}f\left(x,y,z\right)\mathrm{dS}\right\|\le\iint_{\Sigma_{}}\left\|f\left(x,y,z\right)\right\|\mathrm{dS}
估值定理mSΣf(x,y,z)dSMSmS\le\iint_{\Sigma}f\left(x,y,z\right)dS\le MS
线性可拆Σ[k1f(x,y,z)+k2g(x,y,z)]dS=k1Σf(x,y,z)dS+k2Σg(x,y,z)dS\iint_{\Sigma}\left\lbrack k_1f\left(x,y,z\right)+k_2g\left(x,y,z\right)]\mathrm{dS}\right.=k_1\iint_{\Sigma}f\left(x,y,z\right)\mathrm{dS}+k_2\iint_{\Sigma}g\left(x,y,z\right)\mathrm{dS}
区域可加Σf(x,y,z)dS=Σ1f(x,y,z)dS+Σ2f(x,y,z)dS\iint_{\Sigma}f\left(x,y,z\right)\mathrm{dS}=\iint_{\Sigma_1}f\left(x,y,z\right)\mathrm{dS}+\iint_{\Sigma_2}f\left(x,y,z\right)\mathrm{dS}
中值定理Σf(x,y,z)dS=f(ξ,η,ζ)S\iint_{\Sigma}f\left(x,y,z\right)\mathrm{dS}=f\left(\xi,\eta,\zeta\right)S
普通对称Σf(x,y,z)dS={2Σ1f(x,y,z)dSf(x,y,z)=f(x,y,z)0,f(x,y,z)=f(x,y,z)\iint_{\Sigma}f\left(x,y,z\right)\mathrm{dS}=\left\{\begin{array}{l}2\iint_{\Sigma_1}f\left(x,y,z\right)\mathrm{dS}\\ f\left(-x,y,z\right)=f\left(x,y,z\right)\\ 0,\\ f(x,y,z)=-f(-x,y,z)\end{array}\right.
轮换对称Σf(x,y,z)dS=Σf(y,x,z)dS\iint_{\Sigma}f\left(x,y,z\right)\mathrm{dS}= \iint_{\Sigma}f\left(y,x,z\right)\mathrm{dS}

将边界方程带入被积函数可化简

一型积分的应用

质心=重心,当ρ\rho是常数时,质心=形心。xˉ=xρ  dVρdV;yˉ=yρ  dVρdV;zˉ=zρ  dVρdV\bar{x}=\dfrac{\int x\rho\;\mathrm{dV}}{\int\rho\mathrm{dV}};\bar{y}=\dfrac{\int y\rho\;\mathrm{dV}}{\int\rho\mathrm{dV}};\bar{z}=\dfrac{\int z\rho\;\mathrm{dV}}{\int\rho\mathrm{dV}}

转动惯量:Ix=Dy2ρ(x,y)dσ=Ω(y2+z2)ρ(x,y,z)dvI_{x}=\iint_{D}y^2\rho\left(x,y\right)d\sigma = \iiint _\Omega(y^2+z^2)\rho(x,y,z)dv

对于一个质点的转动惯量:I=mr2I=mr^2

引力Fx=GmΩρ(x,y,z)(xx0)[(xx0)2+(yy0)2+(z+z0)2]32dvF_x=Gm\iiint_\Omega \dfrac{\rho (x,y,z)(x-x_0)}{[(x-x_0)^2+(y-y_0)^2+(z+z_0)^2]^{\frac{3}{2}}}dv

Loading Comments...