跳到主要内容

微分方程

类型
y+p(x)y=q(x)y^{\prime}+p(x)y=q(x)y=ep(x)dx[ep(x)dxq(x)dx+C].y=e^{-\int p(x)dx}[\int e^{\int p(x)dx}\cdot q(x)dx+C].
y=f(x)g(y)y'=f(x)\cdot g(y)dyg(y)=f(x)dx\int\dfrac{dy}{g(y)}=\int f(x)dx
y=f(ax+by+c)y'=f(ax+by+c)u=ax+by+c    u=a+bf(u)dua+bf(u)=dxu=ax+by+c\implies u'=a+bf(u)\\\int \dfrac{du}{a+bf(u)}=\int dx
y=f(yx)y'=f(\dfrac{y}{x})u=yx    y=ux    dydx=dudxx+uduf(u)u=dxxu=\dfrac{y}{x}\implies y=ux\implies \dfrac{dy}{dx}=\dfrac{du}{dx}x+u \\ \int\dfrac{du}{f(u)-u}=\int\dfrac{dx}{x}
y+p(x)y=q(x)yn(n0,1)y^{\prime}+p(x)y=q(x)y^n\\(n\ne0,1)z=y1n    dzdx=(1n)yndydx11ndzdx+p(x)z=q(x)z=y^{1-n}\implies\dfrac{dz}{\mathrm{d}x}=\left(1-n\right)y^{-n}\dfrac{dy}{\mathrm{d}x}\\\dfrac{1}{1-n}\dfrac{dz}{\mathrm{d}x}+p\left(x\right)z=q\left(x\right)
y=f(x,y)y''=f(x,y')y=p    y=py'=p\implies y''=p'
y=f(y,y)y''=f(y,y')y=p    pdpdy=f(y,p)y'=p\implies p\dfrac{dp}{dy}=f(y,p)

⑤是伯努利方程。

高阶微分方程

y+py+q=f(x)y''+py'+q=f(x)

  1. 求齐次方程的通解:
  2. 写出非齐次方程的特解yy^*并代回方程求待定系数。
  3. 写出通解

齐次方程的通解:

特征方程:r2+pr+q=0r^2+pr+q=0

齐次线性方程的通解y={C1eλ1x+C2eλ2x.Δ>0(C1+C2x)eλx.Δ=0eαx(C1cosβx+C2sinβx).Δ<0y=\left\{\begin{array}{llllllllll}C_1e_{}^{\lambda_1x}+C_2e_{}^{\lambda_2x}. & \Delta>0\\ \left(C_1+C_2x\right)e^{\lambda x}. & \Delta=0\\ e^{\alpha x}\left(C_1\cos\beta x+C_2\sin\beta x\right). & \Delta<0\end{array}\right.

Δ\Delta是特征方程的判别式,λ\lambda是特征方程的解。

非齐次方程的特解:

f(x)=Pn(x)eαx    y=eαxQn(x)xkf(x)=P_n(x)e^{\alpha x}\implies y^*=e^{\alpha x}Q_n(x)x^k

kkα\alphaλ\lambda相等的个数。

f(x)=eαx[Pm(x)cosβx+Pn(x)sinβx]    y=eαx[Qmax(m,n)cosβx+Qmax(m,n)sinβx]xkf(x)=e^{\alpha x}[P_m(x)\cos \beta x+P_n(x)\sin \beta x]\\\implies y^*=e^{\alpha x}[Q_{\max(m,n)}\cos \beta x+Q^*_{\max(m,n)}\sin\beta x]x^k

α±βi\alpha\pm\beta\mathrm{i}是特征根,k=1k=1,否则k=0k=0

欧拉方程

x2y+pxy+qy=f(x)x^2y''+pxy'+qy=f(x)

x>0x>0时,令x=etx=e^t

d2ydt2+(p1)dydt+qy=f(et)\dfrac{\mathrm{d}^2y}{\mathrm{d}t^2}+\left(p-1\right)\dfrac{\mathrm{d}y}{\mathrm{d}t}+qy=f\left(e^{t}\right)

即可求解。

x<0x<0时令x=etx=-e^t也相同。

微分算子法

求特解

D=ddxDy=dydxD2=d2dx21D=F(D)=D2+pD+qF(D)y=f(x)D=\dfrac{\mathrm{d}}{\mathrm{d}x}\quad Dy=\dfrac{\mathrm{d}y}{\mathrm{d}x}\quad D^2=\dfrac{\mathrm{d}^2}{\mathrm{d}x^2}\quad\frac{1}{D}=\int\quad F\left(D\right)=D^2+pD+q\quad F\left(D\right)y=f\left(x\right)

情况1:

{y=1F(D=α)eαxF(D=α)0y=1F(D=α)xeαxF(D=α)=0,F(D=α)0y=1F(D=α)x2eαxF(D=α)\left\{\begin{array}{l}y*=\dfrac{1}{F(D=\alpha)}e^{\alpha x}&F(D=\alpha)\ne0\\ y^{*}=\dfrac{1}{F^{\prime}\left(D=\alpha\right)}xe^{\alpha x}&F(D=\alpha)=0,F'(D=\alpha)\ne0\\y^*=\dfrac{1}{F''(D=\alpha)}x^2e^{\alpha x}&\cdots F''(D=\alpha)\end{array}\right.

情况2:

{y=1F(D2=β)cosβxF(D2=β)0y=1F(D2=β)xcosβxF(D2=β)=0,F(D2=β)0\left\{\begin{array}{l}y*=\dfrac{1}{F(D^2=-\beta)}\cos\beta x& F(D^2=-\beta)\ne0\\ y^{*}=\dfrac{1}{F^{\prime}\left(D^2=-\beta\right)}x\cos\beta x& F(D^2=-\beta)=0,F^{\prime}(D^2=-\beta)\ne0\end{array}\right.

情况3:Qk(D)Q_k(D)是将1F(D)\dfrac1{F(D)}泰勒展开到DkD^k项。

y=1F(D)Pk(x)=QK(D)Pk(x)y^*=\dfrac{1}{F(D)}P_k(x)=Q_K(D)P_k(x)

情况4:

y=1F(D)eαxv(x)=eαx1F(D+α)v(x)y^*=\dfrac{1}{F(D)}e^{\alpha x}v(x)=e^{\alpha x}\cdot \dfrac1{F(D+\alpha)}v(x)

可能需要用到上面的几种运算

Loading Comments...