跳到主要内容

概述

从广义上来说,机器学习是一种能够赋予机器学习的能力以此让它完成直接编程无法完成的功能的方法。但从实践的意义上来说,机器学习是一种通过利用数据,训练出模型,然后使用模型预测的一种方法

机器学习跟模式识别,统计学习,数据挖掘,计算机视觉,语音识别,自然语言处理等领域有着很深的联系。

从范围上来说,机器学习跟模式识别,统计学习,数据挖掘是类似的,同时,机器学习与其他领域的处理技术的结合,形成了计算机视觉、语音识别、自然语言处理等交叉学科。因此,一般说数据挖掘时,可以等同于说机器学习。同时,我们平常所说的机器学习应用,应该是通用的,不仅仅局限在结构化数据,还有图像,音频等应用。

  1. 模式识别: 即机器学习,两者的主要区别在于:前者是从工业界发展起来的概念.后者则主要源自计算机学科
  2. 数据挖掘: 即机器学习+数据库. 数据挖掘仅仅是一种思考方式,告诉我们应该尝试从数据中挖掘出知识,但不是每个数据都能挖掘出金子的,所以不要神话它。一个系统绝对不会因为上了一个数据挖掘模块就变得无所不能,恰恰相反,一个拥有数据挖掘思维的人员才是关键,而且他还必须对数据有深刻的认识,这样才可能从数据中导出模式指引业务的改善。大部分数据挖掘中的算法是机器学习的算法在数据库中的优化
  3. 计算机视觉: 图像处理+机器学习. 图像处理技术用于将图像处理为适合进入机器学习模型中的输入,机器学习则负责从图像中识别出相关的模式。计算机视觉相关的应用非常的多,例如百度识图、手写字符识别、车牌识别等等应用。这个领域是应用前景非常火热的,同时也是研究的热门方向。随着机器学习的新领域深度学习的发展,大大促进了计算机图像识别的效果,因此未来计算机视觉界的发展前景不可估量
  4. 自然语言处理: 文本处理+机器学习. 自然语言处理技术主要是让机器理解人类的语言的一门领域:在自然语言处理技术中,大量使用了编译原理相关的技术,例如词法分析,语法分析等等. 在理解这个层面,则使用了语义理解,机器学习等技术. 作为唯一由人类自身创造的符号,自然语言处理一直是机器学习界不断研究的方向。按照百度机器学习专家余凯的说法“听与看,说白了就是阿猫和阿狗都会的,而只有语言才是人类独有的”。如何利用机器学习技术进行自然语言的的深度理解,一直是工业和学术界关注的焦点

基本流程

机器学习工作流(WorkFlow)包含数据预处理(Processing)、模型学习(Learning)、模型评估(Evaluation)、新样本预测(Prediction)几个步骤。

  1. 数据预处理:输入(未处理的数据 + 标签)→处理过程(特征处理+幅度缩放、特征选择、维度约减、采样)→输出(测试集 + 训练集)。
  2. 模型学习:模型选择、交叉验证、结果评估、超参选择。
  3. 模型评估:了解模型对于数据集测试的得分。
  4. 新样本预测:预测测试集。

关键组件

首先介绍一些核心组件。无论什么类型的机器学习问题,都会遇到这些组件:

  1. 可以用来学习的数据(data);
  2. 如何转换数据的模型(model);
  3. 一个目标函数(objective function),用来量化模型的有效性;
  4. 调整模型参数以优化目标函数的算法(algorithm)。

核心技术

  1. 分类:应用以分类数据进行模型训练,根据模型对新样本进行精准分类与预测。
  2. 聚类:从海量数据中识别数据的相似性与差异性,并按照最大共同点聚合为多个类别。
  3. 异常检测:对数据点的分布规律进行分析,识别与正常数据及差异较大的离群点。
  4. 回归:根据对已知属性值数据的训练,为模型寻找最佳拟合参数,基于模型预测新样本的输出值。

监督学习和非监督学习

监督学习需要具有标签label的训练数据. 比如做分类. 你需要先对训练数据做标记. 然后才能训练模型将数据分成你需要的标记类.

而非监督学习则不需要标签. 没有指导下自己去. 探索是数据联系.

  • 监督学习(Supervised Learning):训练集有标记信息,学习方式有分类和回归。
  • 无监督学习(Unsupervised Learning):训练集没有标记信息,学习方式有聚类和降维。
  • 强化学习(Reinforcement Learning):有延迟和稀疏的反馈标签的学习方式。

监督学习:从给定的训练数据集中学习出一个函数,当新的数据到来时,可以根据这个函数预测结果。监督学习的训练集要求是包括输入和输出,也可以说是特征和目标。训练集中的目标是由人标注的。常见的监督学习算法包括回归分析和统计分类。

更多监督学习的算法模型总结可以查看ShowMeAI的文章 AI知识技能速查 | 机器学习-监督学习。 无监督学习:与监督学习相比,训练集没有人为标注的结果。常见的无监督学习算法有生成对抗网络(GAN)、聚类。

更多无监督学习的算法模型总结可以查看ShowMeAI的文章 AI知识技能速查 | 机器学习-无监督学习。 强化学习:通过观察来学习做成如何的动作。每个动作都会对环境有所影响,学习对象根据观察到的周围环境的反馈来做出判断。

人工智能和机器学习的关系

机器学习(Machine learning)是人工智能的子集,是实现人工智能的一种途径,但并不是唯一的途径。它是一门专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能的学科。大概在上世纪80年代开始蓬勃发展,诞生了一大批数学统计相关的机器学习模型。

深度学习(Deep learning)是机器学习的子集,灵感来自人脑,由人工神经网络(ANN)组成,它模仿人脑中存在的相似结构。在深度学习中,学习是通过相互关联的「神经元」的一个深层的、多层的「网络」来进行的。「深度」一词通常指的是神经网络中隐藏层的数量。大概在2012年以后爆炸式增长,广泛应用在很多的场景中。

人工智能的研究领域也在不断扩大,包括专家系统、机器学习、进化计算、模糊逻辑、计算机视觉、自然语言处理、推荐系统等。

机器学习是一种实现人工智能的方法,深度学习是一种实现机器学习的技术。我们就用最简单的方法——同心圆,可视化地展现出它们三者的关系。

人工智能研究的领域主要有五层:

1、最底层是基础设施建设,包含数据和计算能力两部分,数据越大,人工智能的能力越强。

2、往上一层为算法,如卷积神经网络、LSTM 序列学习、Q-Learning、深度学习等算法,都是机器学习的算法。

3、第三层为重要的技术方向和问题,如计算机视觉,语音工程,自然语言处理等。还有另外的一些类似决策系统,像 reinforcement learning(编辑注:增强学习),或像一些大数据分析的统计系统,这些都能在机器学习算法上产生。

4、第四层为具体的技术,如图像识别、语音识别、机器翻译等等。

5、最顶端为行业的解决方案,如人工智能在金融、医疗、互联网、交通和游戏等上的应用,这是我们所关心它能带来的价值。

机器学习:一种实现人工智能的方法

机器学习最基本的做法,是使用算法来解析数据、从中学习,然后对真实世界中的事件做出决策和预测。与传统的为解决特定任务、硬编码的软件程序不同,机器学习是用大量的数据来“训练”,通过各种算法从数据中学习如何完成任务。

举个简单的例子,当我们浏览网上商城时,经常会出现商品推荐的信息。这是商城根据你往期的购物记录和冗长的收藏清单,识别出这其中哪些是你真正感兴趣,并且愿意购买的产品。这样的决策模型,可以帮助商城为客户提供建议并鼓励产品消费。

机器学习直接来源于早期的人工智能领域,传统的算法包括决策树、聚类、贝叶斯分类、支持向量机、EM、Adaboost等等。从学习方法上来分,机器学习算法可以分为监督学习(如分类问题)、无监督学习(如聚类问题)、半监督学习、集成学习、深度学习和强化学习。

传统的机器学习算法在指纹识别、基于Haar的人脸检测、基于HoG特征的物体检测等领域的应用基本达到了商业化的要求或者特定场景的商业化水平,但每前进一步都异常艰难,直到深度学习算法的出现。

机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。

机器学习是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。

机器学习最基本的做法,是使用算法来解析数据、从中学习,然后对真实世界中的事件做出决策和预测。

与传统的为解决特定任务、硬编码的软件程序不同,机器学习是用大量的数据来“训练”,通过各种算法从数据中学习如何完成任务。

机器学习最成功的应用领域是计算机视觉,虽然也还是需要大量的手工编码来完成工作。人们需要手工编写分类器、边缘检测滤波器,以便让程序能识别物体从哪里开始,到哪里结束;写形状检测程序来判断检测对象是不是有八条边;写分类器来识别字母“STOP”。使用以上这些手工编写的分类器,人们总算可以开发算法来感知图像,判断图像是不是一个停止标志牌。

机器学习有三类:

第一类是无监督学习,指的是从信息出发自动寻找规律,并将其分成各种类别,有时也称"聚类问题"。

第二类是监督学习,监督学习指的是给历史一个标签,运用模型预测结果。如有一个水果,我们根据水果的形状和颜色去判断到底是香蕉还是苹果,这就是一个监督学习的例子。

最后一类为强化学习,是指可以用来支持人们去做决策和规划的一个学习方式,它是对人的一些动作、行为产生奖励的回馈机制,通过这个回馈机制促进学习,这与人类的学习相似,所以强化学习是目前研究的重要方向之一。

深度学习:一种实现机器学习的技术

深度学习本来并不是一种独立的学习方法,其本身也会用到有监督和无监督的学习方法来训练深度神经网络。但由于近几年该领域发展迅猛,一些特有的学习手段相继被提出(如残差网络),因此越来越多的人将其单独看作一种学习的方法。

最初的深度学习是利用深度神经网络来解决特征表达的一种学习过程。深度神经网络本身并不是一个全新的概念,可大致理解为包含多个隐含层的神经网络结构。为了提高深层神经网络的训练效果,人们对神经元的连接方法和激活函数等方面做出相应的调整。其实有不少想法早年间也曾有过,但由于当时训练数据量不足、计算能力落后,因此最终的效果不尽如人意。

深度学习摧枯拉朽般地实现了各种任务,使得似乎所有的机器辅助功能都变为可能。无人驾驶汽车,预防性医疗保健,甚至是更好的电影推荐,都近在眼前,或者即将实现。

深度学习:一种实现机器学习的技术 机器学习同深度学习之间是有区别的,机器学习是指计算机的算法能够像人一样,从数据中找到信息,从而学习一些规律。虽然深度学习是机器学习的一种,但深度学习是利用深度的神经网络,将模型处理得更为复杂,从而使模型对数据的理解更加深入。

深度学习是机器学习中一种基于对数据进行表征学习的方法。深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。

同机器学习方法一样,深度机器学习方法也有监督学习与无监督学习之分。不同的学习框架下建立的学习模型很是不同。例如,卷积神经网络(Convolutional neural networks,简称CNNs)就是一种深度的监督学习下的机器学习模型,而深度置信网(Deep Belief Nets,简称DBNs)就是一种无监督学习下的机器学习模型。

神经网络:一种机器学习的算法

神经网络在设计的时候就是模仿人脑的处理方式,希望其可以按人类大脑的逻辑运行(尽管目前来说对人脑的研究仍不够透彻)。神经网络已经有很多年的历史,但现在基本很少听到了。饮鹿网(innov100)产业研究员认为神经网络可以简单的分为单层,双层,以及多层网络。神经网络在之前有非常多的问题,层数无法深入过多,有太多的参数需要调节,样本数据量过小等问题。总之,其之前是一门并不被看好的技术。直到2006年,Hinton在《Science》和相关期刊上发表了论文,首次提出了“深度信念网络”的概念。

人工神经网络(Artificial Neural Networks)是早期机器学习中的一个重要的算法,历经数十年风风雨雨。神经网络的原理是受我们大脑的生理结构——互相交叉相连的神经元启发。但与大脑中一个神经元可以连接一定距离内的任意神经元不同,人工神经网络具有离散的层、连接和数据传播的方向。

例如,我们可以把一幅图像切分成图像块,输入到神经网络的第一层。在第一层的每一个神经元都把数据传递到第二层。第二层的神经元也是完成类似的工作,把数据传递到第三层,以此类推,直到最后一层,然后生成结果。

每一个神经元都为它的输入分配权重,这个权重的正确与否与其执行的任务直接相关。最终的输出由这些权重加总来决定。

我们以“停止(Stop)标志牌”为例,将一个停止标志牌图像的所有元素都打碎,然后用神经元进行“检查”:八边形的外形、消防车般的红颜色、鲜明突出的字母、交通标志的典型尺寸和静止不动运动特性等等。神经网络的任务就是给出结论,它到底是不是一个停止标志牌。神经网络会根据所有权重,给出一个经过深思熟虑的猜测——“概率向量”。

回过头来看这个停止标志识别的例子。神经网络是调制、训练出来的,时不时还是很容易出错的。它最需要的,就是训练。需要成百上千甚至几百万张图像来训练,直到神经元的输入的权值都被调制得十分精确,无论是否有雾,晴天还是雨天,每次都能得到正确的结果。

只有这个时候,我们才可以说神经网络成功地自学习到一个停止标志的样子;或者在Facebook的应用里,神经网络自学习了你妈妈的脸;又或者是2012年吴恩达(Andrew Ng)教授在Google实现了神经网络学习到猫的样子等等。

吴教授的突破在于,把这些神经网络从基础上显著地增大了。层数非常多,神经元也非常多,然后给系统输入海量的数据,来训练网络。在吴教授这里,数据是一千万YouTube视频中的图像。吴教授为深度学习(deep learning)加入了“深度”(deep)。这里的“深度”就是说神经网络中众多的层。

现在,经过深度学习训练的图像识别,在一些场景中甚至可以比人做得更好:从识别猫,到辨别血液中癌症的早期成分,到识别核磁共振成像中的肿瘤。Google的AlphaGo先是学会了如何下围棋,然后与它自己下棋训练。它训练自己神经网络的方法,就是不断地与自己下棋,反复地下,永不停歇。

Loading Comments...