跳到主要内容

通设:S=limnSn=n=1unS=\lim_{n\to \infin}S_n=\sum_{n=1}^{\infin}u_n T=limnTn=n=1vnT=\lim_{n\to \infin}T_n=\sum_{n=1}^{\infin}v_n,S,TS,T表示收敛,!S,!T!S,!T表示发散,DD表示发散,AA表示收敛

常数项级数

S=limnSn=n=1unS= \lim_{n\to \infin} S_n=\sum_{n=1}^{\infty}u_{n}

  1. (aun+bvn)    aS+bT\sum(au_n+bv_n) \implies aS+bT

改变级数的任意有限项,不会改变级数的敛散性

  1. S    limnun=0S\implies\lim_{n\to\infin} u_n=0

正向级数的收敛原则

  1. SmSMS \Longleftrightarrow m\le S\le M
  2. 比较判别法:un<vn    {T    S!S    !Tu_{n}<v_{n}\implies\begin{cases}T\implies S\\ !S\implies!T\end{cases}
  3. 分式比较法:limnunvn=A    {A=0T    SA=!T    !SA0ST\lim_{n\to\infty}\dfrac{u_{n}}{v_{n}}=A\implies\left\{\begin{array}{l}A=0&T\implies S\\ A=\infty&!T\implies!S\\ A\ne0\left|\right|\infty& S\thickapprox T\end{array}\right.
  4. 比值判别法:limnun+1un=ρ    {ρ<1    Sρ>1    !Sρ=1    noworking\lim_{n\to\infty}\dfrac{u_{n+1}}{u_{n}}=\rho\implies\begin{cases}\rho<1\implies S\\ \rho>1\implies!S\\ \rho=1\implies\mathrm{noworking}\end{cases}
  5. 根值判别法:limnunn=ρ    {ρ<1    Sρ>1    !Sρ=1    noworking\lim_{n\to\infty}\sqrt[n]{u_{n}}=\rho\implies\begin{cases}\rho<1\implies S\\ \rho>1\implies!S\\ \rho=1\implies\mathrm{noworking}\end{cases}

积分判别法:un=f(n)u_n=f(n)函数是连续、非负、单调减少。则S=n=auna+f(x)dxS=\sum_{n=a}^\infin u_n\approx\int_{a}^{+\infty}f(x)dx

交错级数的收敛判别

莱布尼兹判别法:n=1(1)n1un,un>0\sum_{n=1}^\infin(-1)^{n-1}u_n,u_n>0,un{u_n}单调不增且limnun=0\lim_{n\to \infin}u_n=0则级数收敛。

任意项级数的判别

  1. S    S|S|\implies S
  2. 条件发散:S&!SS\&!|S|
  3. 绝对收敛的级数任意项交换后仍然绝对收敛
  4. u    u|u|\implies u
  5. !u    !u!u\implies!|u|
  6. u2    unnu^2\implies \dfrac{u_n}{n};unn12(un2+1n2)|\dfrac{u_{n}}{n}|\le\frac12\left(u_{n}^2+\frac{1}{n^2}\right)
  7. u  ̸ ⁣ ⁣ ⁣    uu\;\not\!\!\!\implies\left|u\right|
  8. u  ̸ ⁣ ⁣ ⁣    u2u\;\not\!\!\!\implies u^2
  9. u  ̸ ⁣ ⁣ ⁣    (1)nuu\;\not\!\!\!\implies (-1)^nu
  10. u  ̸ ⁣ ⁣ ⁣    unun+1u\;\not\!\!\!\implies u_nu_{n+1}
  11. u    un+un+1u\implies u_n+u_{n+1}
  12. u    unun+1u\implies u_n - u_{n+1}
  13. u    u2n1+u2nu\implies u_{2n-1}+u_{2n}:收敛级数的任意加括号所得的级数仍收敛
  14. u  ̸ ⁣ ⁣ ⁣    u2n1u2nu\;\not\!\!\!\implies u_{2n-1} - u_{2n}
  15. uA+vA    AuA+vA \implies A
  16. uA+vD    DuA+vD \implies D
  17. uA+vA    D|u|A+|v|A\implies D
  18. uD+uD    ?uD+uD\implies ?

收敛级数的项任意加括号后所得的新级数仍然收敛,且其和不变。加括号后发散,原级数发散。

交替级数的存在使得uu在做乘法运算后的敛散性不能确定

常见级数?

相关:反常积分

  1. 几何级数aqn1{p<1    A=a1qp1    D\sum aq^{n-1}\begin{cases}\left|p\right|<1\implies A=\dfrac{a}{1-q}\\ \left|p\right|\ge1\implies D\end{cases}
  2. 调和级数:1n    D\sum \dfrac1n\implies D
  3. 交错调和级数:(1)n11n    A\sum (-1)^{n-1}\cdot\dfrac1n\implies A
  4. 广义调和级数:1an+b    D\sum \dfrac1{an+b}\implies D
  5. pp级数:1np{p>1    Ap1    D\sum\dfrac{1}{n^{p}}\begin{cases}p>1\implies A\\ p\le1\implies D\end{cases}
  6. 广义pp级数:1nlnpn{p>1    Ap1    D\sum\dfrac{1}{n\ln^{p}{n}}\begin{cases}p>1\implies A\\ p\le1\implies D\end{cases}

幂级数

函数项级数:un(x)\sum u_n(x),nn为变量,xx为参变量,收敛于一个函数,xx取确定的值x0x_0时,函数项级数确定为常数项级数。 给定x0Ix_0\in I,此时函数项级数收敛,x0x_0称为收敛点。函数项级数的所有收敛点的集合称为它的收敛域。

阿贝尔定理

anxn\sum a_nx^nx=x1x=x_1处收敛,对于满足x<x1|x|<|x_1|的一切xx,幂级数绝对收敛;在x=x2x=x_2处发散,对于满足x>x2|x|>|x_2|的一切xx,幂级数发散。 limnan+1an=ρ    R={1ρρ0+ρ=00ρ=+\lim_{n\to\infty}\left|\dfrac{a_{n+1}}{a_{n}}\right|=\rho\implies R=\left\{\begin{array}{l}\dfrac{1}{\rho} & \rho\ne0\\ +\infty & \rho=0\\ 0& \rho=+\infin\end{array}\right.

以上确定了收敛半径,然后单独确定x=±Rx=\pm R的敛散性。

幂级数的和函数?

S(x)=n=1un(x)S(x)=\sum_{n=1}^\infin u_n(x)

在收敛域上。

  1. kS=kunkS=\sum ku_n
  2. anxn±bnxn=(an±bn)xn,x<R=min{Ra,Rb}\sum a_nx^n\pm \sum b_nx^n=\sum (a_n\pm b_n)x^n,|x|<R=\min\{R_a,R_b\}

n=0anx2n+n=0bn+1x2n+2=a0x0+n=1anx2n+n=1bnx2n=a0+n=1(an+bn)x2n\sum_{n=0}^{\infty}a_{n}x^{2n}+\sum_{n=0}^{\infty}b_{n+1}x^{2n+2}=a_0x^0+\sum_{n=1}^{\infty}a_{n}x^{2n}+\sum_{n=1}^{\infty}b_{n}x^{2n}=a_0+\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)x^{2n}

幂级数和函数的性质:

  1. 幂级数S(x)S(x)在收敛区域内连续
  2. 幂级数S(x)S(x)在收敛区域内可积,逐项积分公式:

0xS(t)dt=0xn=0antndt=an0xtndt=ann+1xn+1(xI)\int_0^{x}S\left(t\right)\mathrm{d}t=\int_0^{x}\sum_{n=0}^{\infty}a_{n}t^{n}dt=\sum a_{n}\int_0^{x}t^{n}dt=\sum\frac{a_{n}}{n+1}x^{n+1}\left(x\in I\right)

收敛半径不变,收敛域可能扩大

  1. 幂级数S(x)S(x)在收敛区域内可导,逐项求导公式:

S(x)=(anxn)=(anxn)=nanxn1(x<R)S^{\prime}\left(x\right)=\left(\sum a_{n}x^{n}\right)^{\prime}=\sum\left(a_{n}x^{n}\right)^{\prime}=\sum na_{n}x^{n-1}\left(\left|x\right|<R\right)

收敛半径不变,但收敛域可能缩小

泰勒展开,从x0x_0处展开: f(x)=n=0f(n)(x0)n!(xx0)nf(x)=\sum_{n=0}^{\infty}\dfrac{f^{(n)}(x_0)}{n!}(x-x_0)^{n} 麦克劳林级数: f(x)=n=0f(n)(0)n!xnf(x)=\sum_{n=0}^{\infty}\dfrac{f^{(n)}(0)}{n!}x^{n} 求法:利用已知幂级数展开式。通过变量代换、四则运算、逐项求导、逐项积分和待定系数方法。

ex=n=0xnn!=1+x+x22!+x33!+,xRe^x=\sum_{n=0}\dfrac{x^n}{n!}=1+x+\dfrac{x^2}{2!}+\dfrac{x^3}{3!}+\cdots,x\in R

11+x=n=0xn=1x+x2x3+.x(1,1)\dfrac{1}{1+x}=\sum_{n=0}x^n=1-x+x^2-x^3+\cdots.x\in (-1,1)

11x=n=0xn=1+x+x2+x3+,x(1,1)\dfrac{1}{1-x}=\sum_{n=0}x^n=1+x+x^2+x^3+\cdots,x\in(-1,1)

sinx=n=0(1)nx2n+1(2n+1)!=xx33!+x55!x77!+,xR\sin x=\sum_{n=0}(-1)^n\dfrac{x^{2n+1}}{(2n+1)!}=x-\dfrac{x^3}{3!}+\dfrac{x^5}{5!}-\dfrac{x^7}{7!}+\cdots,x\in R

cosx=n=0(1)nx2n(2n)!=1x22!+x44!x66!+,xR\cos x=\sum_{n=0}(-1)^n\dfrac{x^{2n}}{(2n)!}=1-\dfrac{x^2}{2!}+\dfrac{x^4}{4!}-\dfrac{x^6}{6!}+\cdots,x\in R

ln(1+x)=n=1(1)n1xnn=xx22+x33x44+,x(1,1]\ln(1+x)=\sum_{n=1}(-1)^{n-1}\dfrac{x^n}{n}=x-\dfrac{x^2}2+\dfrac{x^3}3-\dfrac{x^4}4+\cdots,x\in (-1,1]

(1+x)α=1+αx+α(α1)2!x2++α(α1)(αn+1)n!xn+,xI(1+x)^\alpha=1+\alpha x+\dfrac{\alpha(\alpha-1)}{2!}x^2+\cdots+\dfrac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}x^n+\cdots,x\in I

I=(1,1)[α1],I=(1,1][1<α<0],I=[1,1][α>0,α∉N+],I=R[α=N+]I=(-1,1)[\alpha\le-1],I=(-1,1][-1<\alpha<0],I=[-1,1][\alpha>0,\alpha\not\in N_+],I=R[\alpha=N_+]

傅里叶级数?

f(t)=a02+n=1[ancos(nωt)+bnsin(nωt)]f(t)=\dfrac{a_0}{2}+\sum^\infin_{n=1}[a_n\cos(n\omega t)+b_n\sin(n\omega t)]

an=2Tt0t0+Tf(t)cos(nωt)dta_n=\dfrac2T\int^{t_0+T}_{t_0}f(t)\cos (n\omega t)dt

正弦级数和余弦级数

Loading Comments...