跳到主要内容

重积分

二重积分

性质公式
区域面积A=DdσA=\iint_{D}d\sigma
可积有界Df(x,y)dσ=A    mf(x,y)M\iint_{D}f\left(x,y\right)\mathrm{d}\sigma=A\implies m\le f\left(x,y\right)\le M
保号性Df(x,y)dσDf(x,y)dσ\left\|\iint_{D}f\left(x,y\right)\mathrm{d}\sigma\right\|\le\iint_{D_{}}\left\|f\left(x,y\right)\right\|\mathrm{d}\sigma
估值定理mADf(x,y)dσMAmA\le\iint_{D}f\left(x,y\right)d\sigma\le MA
线性可拆D[k1f(x,y)+k2g(x,y)]dσ=k1Df(x,y)dσ+k2Dg(x,y)dσ\iint_{D}\left\lbrack k_1f\left(x,y\right)+k_2g\left(x,y\right)]\mathrm{d}\sigma\right.=k_1\iint_{D}f\left(x,y\right)\mathrm{d}\sigma+k_2\iint_{D}g\left(x,y\right)\mathrm{d}\sigma
区域可加Df(x,y)dσ=D1f(x,y)dσ+D2f(x,y)dσ\iint_{D}f\left(x,y\right)\mathrm{d}\sigma=\iint_{D_1}f\left(x,y\right)\mathrm{d}\sigma+\iint_{D_2}f\left(x,y\right)\mathrm{d}\sigma
中值定理Df(x,y)dσ=f(ξ,η)A\iint_{D}f\left(x,y\right)\mathrm{d}\sigma=f\left(\xi,\eta\right)A
普通对称Df(x,y)dxdy={2D1f(x,y)dxdyf(x,y)=f(x,y)0,f(x,y)=f(x,y)\iint_{D}f\left(x,y\right)\mathrm{dxdy}=\left\{\begin{array}{}2\iint_{D_1}f\left(x,y\right)\mathrm{d}x\mathrm{d}y &f\left(-x,y\right)=f\left(x,y\right)\\ 0,& f(x,y)=-f(-x,y)\end{array}\right.
轮换对称Df(x,y)dσ=Df(y,x)dσ\iint_{D}f\left(x,y\right)d\sigma=\iint_{D}f\left(y,x\right)d\sigma

二重积分计算方法

直角坐标系:Df(x,y)dσ=abdxφ1(x)φ2(x)f(x,y)dy=cddyψ1(y)ψ2(y)f(x,y)dx\iint_{D}f\left(x,y\right)d\sigma=\int_{a}^{b}dx\int_{\varphi_1\left(x\right)}^{\varphi_2\left(x\right)}f\left(x,y\right)\mathrm{d}y=\int_{c}^{d}dy\int_{\psi_1\left(y\right)}^{\psi_2\left(y\right)}f\left(x,y\right)\mathrm{d}x

极坐标系:Df(x,y)dσ=αβdθr1(θ)r2(θ)f(rcosθ,rsinθ)rdr\iint_{D}f\left(x,y\right)d\sigma=\int_{\alpha}^{\beta}d\theta\int_{r_1\left(\theta\right)}^{r_2\left(\theta\right)}f\left(r\cos\theta,r\sin\theta\right)rdr

交换积分次序

三重积分

权重空间,可以把看作是密度ρ\rho

性质公式
物体体积Ωdv=V\iiint_{\Omega}dv=V
可积有界Ωf(x,y,z)dv=A    mf(x,y,z)M\iiint_{\Omega}f\left(x,y,z\right)\mathrm{dv}=A\implies m\le f\left(x,y,z\right)\le M
保号性Ωf(x,y,z)dvΩf(x,y,z)dvΩf(x,y,z)dvΩg(x,y,z)dv\left\|\iiint_{\Omega}f\left(x,y,z\right)\mathrm{dv}\right\|\le\iiint_{\Omega}\left\|f\left(x,y,z\right)\right\|\mathrm{dv}\quad \|\| \quad \iiint_\Omega f(x,y,z)dv \le\iiint_\Omega g(x,y,z)dv
估值定理mVΩf(x,y,z)dvMVmV\le\iiint_{\Omega}f\left(x,y,z\right)dv\le MV
线性可拆Ω[k1f(x,y,z)+k2g(x,y,z)]dv=k1Ωf(x,y,z)dv+k2Ωg(x,y,z)dv\iiint_{\Omega}\left\lbrack k_1f\left(x,y,z\right)+k_2g\left(x,y,z\right)]\mathrm{dv}\right.=k_1\iiint_{\Omega}f\left(x,y,z\right)\mathrm{dv}+k_2\iiint_{\Omega}g\left(x,y,z\right)\mathrm{dv}
区域可加Ωf(x,y,z)dv=Ω1f(x,y,z)dv+Ω2f(x,y,z)dv\iiint_{\Omega}f\left(x,y,z\right)\mathrm{dv}=\iiint_{\Omega_1}f\left(x,y,z\right)\mathrm{dv}+\iiint_{\Omega_2}f\left(x,y,z\right)\mathrm{dv}
中值定理Ωf(x,y,z)dv=f(ξ,η,ζ)A\iiint_{\Omega}f\left(x,y,z\right)\mathrm{dv}=f\left(\xi,\eta,\zeta\right)A
普通对称Ωf(x,y,z)dv={2Ω1f(x,y,z)dvf(x,y,z)=f(x,y,z)0,f(x,y,z)=f(x,y,z)\iiint_{\Omega}f\left(x,y,z\right)\mathrm{dv}=\left\{\begin{array}{l}2\iiint_{\Omega_1}f\left(x,y,z\right)\mathrm{dv} & f\left(-x,y,z\right)=f\left(x,y,z\right)\\ 0,&f(x,y,z)=-f(-x,y,z)\end{array}\right.
轮换对称Ωf(x,y,z)dv=Ωf(y,x,z)dv\iiint_{\Omega}f\left(x,y,z\right)\mathrm{d}v= \iiint_{\Omega}f\left(y,x,z\right)\mathrm{d}v

三重积分计算方法

  1. 直角坐标系
  2. 投影穿线法:Ωf(x,y,z)dv=Dxydσz1(x,y)z2(x,y)f(x,y,z)dz\iiint_{\Omega}f\left(x,y,z\right)dv=\iint_{D_{xy}}d\sigma\int_{z_1\left(x,y\right)}^{z_2\left(x,y\right)}f\left(x,y,z\right)dz

后积先定限,限内画条线,先交写下限,后交写上限

  1. 定限截面法:Ωf(x,y,z)dv=abdzDzf(x,y,z)dσ\iiint_{\Omega}f\left(x,y,z\right)dv=\int_{a}^{b}dz\iint_{D_{z}}f\left(x,y,z\right)d\sigma

  2. 柱面坐标系:Ωf(x,y,z)dxdydz=Ωf(rcosθ,rsinθ,z)rdrdθdz\iiint_{\Omega}f\left(x,y,z\right)\mathrm{d}xdydz=\iiint_{\Omega}f\left(r\cos\theta,r\sin\theta,z\right)rdrd\theta dz

  3. 球面坐标系:Ωf(x,y,z)dxdydz=Ωf(rsinφcosθ,rsinφcosθ,rcosφ)r2sinφdθdφdr\iiint_{\Omega}f\left(x,y,z\right)\mathrm{d}xdydz=\iiint_{\Omega}f\left(r\sin\varphi\cos\theta,r\sin\varphi\cos\theta,r\cos\varphi\right)r^2\sin\varphi d\theta d\varphi dr

Loading Comments...